Main Page | Modules | Class List | Directories | File List | Class Members | File Members | Related Pages

ubi_BinTree.c

Go to the documentation of this file.
00001 /* ========================================================================== **
00002  * $Id$
00003  *
00004  *                              ubi_BinTree.c
00005  *
00006  *  Copyright (C) 1991-1998 by Christopher R. Hertel
00007  *
00008  *  Email:  crh@ubiqx.mn.org
00009  * -------------------------------------------------------------------------- **
00010  *
00011  *  This module implements a simple binary tree.
00012  *
00013  * -------------------------------------------------------------------------- **
00014  *
00015  *  This library is free software; you can redistribute it and/or
00016  *  modify it under the terms of the GNU Library General Public
00017  *  License as published by the Free Software Foundation; either
00018  *  version 2 of the License, or (at your option) any later version.
00019  *
00020  *  This library is distributed in the hope that it will be useful,
00021  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
00022  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00023  *  Library General Public License for more details.
00024  *
00025  *  You should have received a copy of the GNU Library General Public
00026  *  License along with this library; if not, write to the Free
00027  *  Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
00028  *
00029  * ========================================================================== **
00030  */
00031 
00032 /*
00033  * 04 Feb 2005: SAS Updated to add ubi_btCheck function that calls a
00034  *                  user provided function to find a node in a
00035  *                  particular tree.
00036  *
00037  */
00038 
00039 #ifdef HAVE_CONFIG_H
00040 #include "config.h"
00041 #endif
00042 
00043 #include "ubi_BinTree.h"  /* Header for this module.   */
00044 
00045 /* ========================================================================== **
00046  * Static data.
00047  */
00048 
00049 static char ModuleID[] = "ubi_BinTree\n\
00050 \t$Revision$\n\
00051 \t$Date$\n\
00052 \t$Author$\n";
00053 
00054 /* ========================================================================== **
00055  * Internal (private) functions.
00056  */
00057 
00058 static ubi_btNodePtr qFind( ubi_btCompFunc cmp,
00059                             ubi_btItemPtr  FindMe,
00060                    register ubi_btNodePtr  p )
00061   /* ------------------------------------------------------------------------ **
00062    * This function performs a non-recursive search of a tree for a node
00063    * matching a specific key.  It is called "qFind()" because it is
00064    * faster that TreeFind (below).
00065    *
00066    *  Input:
00067    *     cmp      -  a pointer to the tree's comparison function.
00068    *     FindMe   -  a pointer to the key value for which to search.
00069    *     p        -  a pointer to the starting point of the search.  <p>
00070    *                 is considered to be the root of a subtree, and only
00071    *                 the subtree will be searched.
00072    *
00073    *  Output:
00074    *     A pointer to a node with a key that matches the key indicated by
00075    *     FindMe, or NULL if no such node was found.
00076    *
00077    *  Note:   In a tree that allows duplicates, the pointer returned *might
00078    *          not* point to the (sequentially) first occurance of the
00079    *          desired key.
00080    * ------------------------------------------------------------------------ **
00081    */
00082   {
00083   int tmp;
00084 
00085   while( (NULL != p)
00086       && ((tmp = ubi_trAbNormal( (*cmp)(FindMe, p) )) != ubi_trEQUAL) )
00087     p = p->Link[tmp];
00088 
00089   return( p );
00090   } /* qFind */
00091 
00092 static ubi_btNodePtr TreeFind( ubi_btItemPtr  findme,
00093                                ubi_btNodePtr  p,
00094                                ubi_btNodePtr *parentp,
00095                                char          *gender,
00096                                ubi_btCompFunc CmpFunc )
00097   /* ------------------------------------------------------------------------ **
00098    * TreeFind() searches a tree for a given value (findme).  It will return a
00099    * pointer to the target node, if found, or NULL if the target node was not
00100    * found.
00101    *
00102    * TreeFind() also returns, via parameters, a pointer to the parent of the
00103    * target node, and a LEFT or RIGHT value indicating which child of the
00104    * parent is the target node.  *If the target is not found*, then these
00105    * values indicate the place at which the target *should be found*.  This
00106    * is useful when inserting a new node into a tree or searching for nodes
00107    * "near" the target node.
00108    *
00109    * The parameters are:
00110    *
00111    *  findme   -  is a pointer to the key information to be searched for.
00112    *  p        -  points to the root of the tree to be searched.
00113    *  parentp  -  will return a pointer to a pointer to the !parent! of the
00114    *              target node, which can be especially usefull if the target
00115    *              was not found.
00116    *  gender   -  returns LEFT or RIGHT to indicate which child of *parentp
00117    *              was last searched.
00118    *  CmpFunc  -  points to the comparison function.
00119    *
00120    * This function is called by ubi_btLocate() and ubi_btInsert().
00121    * ------------------------------------------------------------------------ **
00122    */
00123   {
00124   register ubi_btNodePtr tmp_p      = p;
00125   ubi_btNodePtr          tmp_pp     = NULL;
00126   char                   tmp_gender = ubi_trEQUAL;
00127   int                    tmp_cmp;
00128 
00129   while( (NULL != tmp_p)
00130      && (ubi_trEQUAL != (tmp_cmp = ubi_trAbNormal((*CmpFunc)(findme, tmp_p)))) )
00131     {
00132     tmp_pp     = tmp_p;                 /* Keep track of previous node. */
00133     tmp_gender = (char)tmp_cmp;         /* Keep track of sex of child.  */
00134     tmp_p      = tmp_p->Link[tmp_cmp];  /* Go to child. */
00135     }
00136   *parentp = tmp_pp;                /* Return results. */
00137   *gender  = tmp_gender;
00138   return( tmp_p );
00139   } /* TreeFind */
00140 
00141 static void ReplaceNode( ubi_btNodePtr *parent,
00142                          ubi_btNodePtr  oldnode,
00143                          ubi_btNodePtr  newnode )
00144   /* ------------------------------------------------------------------------ **
00145    * Remove node oldnode from the tree, replacing it with node newnode.
00146    *
00147    * Input:
00148    *  parent   - A pointer to he parent pointer of the node to be
00149    *             replaced.  <parent> may point to the Link[] field of
00150    *             a parent node, or it may indicate the root pointer at
00151    *             the top of the tree.
00152    *  oldnode  - A pointer to the node that is to be replaced.
00153    *  newnode  - A pointer to the node that is to be installed in the
00154    *             place of <*oldnode>.
00155    *
00156    * Notes:    Don't forget to free oldnode.
00157    *           Also, this function used to have a really nasty typo
00158    *           bug.  "oldnode" and "newnode" were swapped in the line
00159    *           that now reads:
00160    *     ((unsigned char *)newnode)[i] = ((unsigned char *)oldnode)[i];
00161    *           Bleah!
00162    * ------------------------------------------------------------------------ **
00163    */
00164   {
00165   *newnode = *oldnode;  /* Copy node internals to new node. */
00166 
00167   (*parent) = newnode;  /* Old node's parent points to new child. */
00168   /* Now tell the children about their new step-parent. */
00169   if( oldnode->Link[ubi_trLEFT] )
00170     (oldnode->Link[ubi_trLEFT])->Link[ubi_trPARENT] = newnode;
00171   if( oldnode->Link[ubi_trRIGHT] )
00172     (oldnode->Link[ubi_trRIGHT])->Link[ubi_trPARENT] = newnode;
00173   } /* ReplaceNode */
00174 
00175 static void SwapNodes( ubi_btRootPtr RootPtr,
00176                        ubi_btNodePtr Node1,
00177                        ubi_btNodePtr Node2 )
00178   /* ------------------------------------------------------------------------ **
00179    * This function swaps two nodes in the tree.  Node1 will take the place of
00180    * Node2, and Node2 will fill in the space left vacant by Node 1.
00181    *
00182    * Input:
00183    *  RootPtr  - pointer to the tree header structure for this tree.
00184    *  Node1    - \
00185    *              > These are the two nodes which are to be swapped.
00186    *  Node2    - /
00187    *
00188    * Notes:
00189    *  This function does a three step swap, using a dummy node as a place
00190    *  holder.  This function is used by ubi_btRemove().
00191    * ------------------------------------------------------------------------ **
00192    */
00193   {
00194   ubi_btNodePtr *Parent;
00195   ubi_btNode     dummy;
00196   ubi_btNodePtr  dummy_p = &dummy;
00197 
00198   /* Replace Node 1 with the dummy, thus removing Node1 from the tree. */
00199   if( NULL != Node1->Link[ubi_trPARENT] )
00200     Parent = &((Node1->Link[ubi_trPARENT])->Link[(int)(Node1->gender)]);
00201   else
00202     Parent = &(RootPtr->root);
00203   ReplaceNode( Parent, Node1, dummy_p );
00204 
00205   /* Swap Node 1 with Node 2, placing Node 1 back into the tree. */
00206   if( NULL != Node2->Link[ubi_trPARENT] )
00207     Parent = &((Node2->Link[ubi_trPARENT])->Link[(int)(Node2->gender)]);
00208   else
00209     Parent = &(RootPtr->root);
00210   ReplaceNode( Parent, Node2, Node1 );
00211 
00212   /* Swap Node 2 and the dummy, thus placing Node 2 back into the tree. */
00213   if( NULL != dummy_p->Link[ubi_trPARENT] )
00214     Parent = &((dummy_p->Link[ubi_trPARENT])->Link[(int)(dummy_p->gender)]);
00215   else
00216     Parent = &(RootPtr->root);
00217   ReplaceNode( Parent, dummy_p, Node2 );
00218   } /* SwapNodes */
00219 
00220 /* -------------------------------------------------------------------------- **
00221  * These routines allow you to walk through the tree, forwards or backwards.
00222  */
00223 
00224 static ubi_btNodePtr SubSlide( register ubi_btNodePtr P,
00225                                register int           whichway )
00226   /* ------------------------------------------------------------------------ **
00227    * Slide down the side of a subtree.
00228    *
00229    * Given a starting node, this function returns a pointer to the LEFT-, or
00230    * RIGHT-most descendent, *or* (if whichway is PARENT) to the tree root.
00231    *
00232    *  Input:  P         - a pointer to a starting place.
00233    *          whichway  - the direction (LEFT, RIGHT, or PARENT) in which to
00234    *                      travel.
00235    *  Output: A pointer to a node that is either the root, or has no
00236    *          whichway-th child but is within the subtree of P.  Note that
00237    *          the return value may be the same as P.  The return value *will
00238    *          be* NULL if P is NULL.
00239    * ------------------------------------------------------------------------ **
00240    */
00241   {
00242 
00243   if( NULL != P )
00244     while( NULL != P->Link[ whichway ] )
00245       P = P->Link[ whichway ];
00246   return( P );
00247   } /* SubSlide */
00248 
00249 static ubi_btNodePtr Neighbor( register ubi_btNodePtr P,
00250                                register int           whichway )
00251   /* ------------------------------------------------------------------------ **
00252    * Given starting point p, return the (key order) next or preceeding node
00253    * in the tree.
00254    *
00255    *  Input:  P         - Pointer to our starting place node.
00256    *          whichway  - the direction in which to travel to find the
00257    *                      neighbor, i.e., the RIGHT neighbor or the LEFT
00258    *                      neighbor.
00259    *
00260    *  Output: A pointer to the neighboring node, or NULL if P was NULL.
00261    *
00262    *  Notes:  If whichway is PARENT, the results are unpredictable.
00263    * ------------------------------------------------------------------------ **
00264    */
00265   {
00266   if( P )
00267     {
00268     if( NULL != P->Link[ whichway ] )
00269       return( SubSlide( P->Link[ whichway ], (char)ubi_trRevWay(whichway) ) );
00270     else
00271       while( NULL != P->Link[ ubi_trPARENT ] )
00272         {
00273         if( whichway == P->gender )
00274           P = P->Link[ ubi_trPARENT ];
00275         else
00276           return( P->Link[ ubi_trPARENT ] );
00277         }
00278     }
00279   return( NULL );
00280   } /* Neighbor */
00281 
00282 static ubi_btNodePtr Border( ubi_btRootPtr RootPtr,
00283                              ubi_btItemPtr FindMe,
00284                              ubi_btNodePtr p,
00285                              int           whichway )
00286   /* ------------------------------------------------------------------------ **
00287    * Given starting point p, which has a key value equal to *FindMe, locate
00288    * the first (index order) node with the same key value.
00289    *
00290    * This function is useful in trees that have can have duplicate keys.
00291    * For example, consider the following tree:
00292    *     Tree                                                      Traversal
00293    *       2    If <p> points to the root and <whichway> is RIGHT,     3
00294    *      / \    then the return value will be a pointer to the       / \
00295    *     2   2    RIGHT child of the root node.  The tree on         2   5
00296    *    /   / \    the right shows the order of traversal.          /   / \
00297    *   1   2   3                                                   1   4   6
00298    *
00299    *  Input:  RootPtr   - Pointer to the tree root structure.
00300    *          FindMe    - Key value for comparisons.
00301    *          p         - Pointer to the starting-point node.
00302    *          whichway  - the direction in which to travel to find the
00303    *                      neighbor, i.e., the RIGHT neighbor or the LEFT
00304    *                      neighbor.
00305    *
00306    *  Output: A pointer to the first (index, or "traversal", order) node with
00307    *          a Key value that matches *FindMe.
00308    *
00309    *  Notes:  If whichway is PARENT, or if the tree does not allow duplicate
00310    *          keys, this function will return <p>.
00311    * ------------------------------------------------------------------------ **
00312    */
00313   {
00314   register ubi_btNodePtr q;
00315 
00316   /* Exit if there's nothing that can be done. */
00317   if( !ubi_trDups_OK( RootPtr ) || (ubi_trPARENT == whichway) )
00318     return( p );
00319 
00320   /* First, if needed, move up the tree.  We need to get to the root of the
00321    * subtree that contains all of the matching nodes.
00322    */
00323   q = p->Link[ubi_trPARENT];
00324   while( (NULL != q)
00325       && (ubi_trEQUAL == ubi_trAbNormal( (*(RootPtr->cmp))(FindMe, q) )) )
00326     {
00327     p = q;
00328     q = p->Link[ubi_trPARENT];
00329     }
00330 
00331   /* Next, move back down in the "whichway" direction. */
00332   q = p->Link[whichway];
00333   while( NULL != q )
00334     {
00335     q = qFind( RootPtr->cmp, FindMe, q );
00336     if( q )
00337       {
00338       p = q;
00339       q = p->Link[whichway];
00340       }
00341     }
00342   return( p );
00343   } /* Border */
00344 
00345 
00346 /* ========================================================================== **
00347  * Exported utilities.
00348  */
00349 
00350 long ubi_btSgn( register long x )
00351   /* ------------------------------------------------------------------------ **
00352    * Return the sign of x; {negative,zero,positive} ==> {-1, 0, 1}.
00353    *
00354    *  Input:  x - a signed long integer value.
00355    *
00356    *  Output: the "sign" of x, represented as follows:
00357    *            -1 == negative
00358    *             0 == zero (no sign)
00359    *             1 == positive
00360    *
00361    * Note: This utility is provided in order to facilitate the conversion
00362    *       of C comparison function return values into BinTree direction
00363    *       values: {LEFT, PARENT, EQUAL}.  It is INCORPORATED into the
00364    *       ubi_trAbNormal() conversion macro!
00365    *
00366    * ------------------------------------------------------------------------ **
00367    */
00368   {
00369   return( (x)?((x>0)?(1):(-1)):(0) );
00370   } /* ubi_btSgn */
00371 
00372 ubi_btNodePtr ubi_btInitNode( ubi_btNodePtr NodePtr )
00373   /* ------------------------------------------------------------------------ **
00374    * Initialize a tree node.
00375    *
00376    *  Input:  a pointer to a ubi_btNode structure to be initialized.
00377    *  Output: a pointer to the initialized ubi_btNode structure (ie. the
00378    *          same as the input pointer).
00379    * ------------------------------------------------------------------------ **
00380    */
00381   {
00382   NodePtr->Link[ ubi_trLEFT ]   = NULL;
00383   NodePtr->Link[ ubi_trPARENT ] = NULL;
00384   NodePtr->Link[ ubi_trRIGHT ]  = NULL;
00385   NodePtr->gender               = ubi_trEQUAL;
00386   NodePtr->balance              = ubi_trEQUAL;
00387   return( NodePtr );
00388   } /* ubi_btInitNode */
00389 
00390 ubi_btRootPtr ubi_btInitTree( ubi_btRootPtr   RootPtr,
00391                               ubi_btCompFunc  CompFunc,
00392                               char            Flags )
00393   /* ------------------------------------------------------------------------ **
00394    * Initialize the fields of a Tree Root header structure.
00395    *
00396    *  Input:   RootPtr   - a pointer to an ubi_btRoot structure to be
00397    *                       initialized.
00398    *           CompFunc  - a pointer to a comparison function that will be used
00399    *                       whenever nodes in the tree must be compared against
00400    *                       outside values.
00401    *           Flags     - One bytes worth of flags.  Flags include
00402    *                       ubi_trOVERWRITE and ubi_trDUPKEY.  See the header
00403    *                       file for more info.
00404    *
00405    *  Output:  a pointer to the initialized ubi_btRoot structure (ie. the
00406    *           same value as RootPtr).
00407    *
00408    *  Note:    The interface to this function has changed from that of
00409    *           previous versions.  The <Flags> parameter replaces two
00410    *           boolean parameters that had the same basic effect.
00411    *
00412    * ------------------------------------------------------------------------ **
00413    */
00414   {
00415   if( RootPtr )
00416     {
00417     RootPtr->root   = NULL;
00418     RootPtr->count  = 0L;
00419     RootPtr->cmp    = CompFunc;
00420     RootPtr->flags  = (Flags & ubi_trDUPKEY) ? ubi_trDUPKEY : Flags;
00421     }                 /* There are only two supported flags, and they are
00422                        * mutually exclusive.  ubi_trDUPKEY takes precedence
00423                        * over ubi_trOVERWRITE.
00424                        */
00425   return( RootPtr );
00426   } /* ubi_btInitTree */
00427 
00428 ubi_trBool ubi_btInsert( ubi_btRootPtr  RootPtr,
00429                          ubi_btNodePtr  NewNode,
00430                          ubi_btItemPtr  ItemPtr,
00431                          ubi_btNodePtr *OldNode )
00432   /* ------------------------------------------------------------------------ **
00433    * This function uses a non-recursive algorithm to add a new element to the
00434    * tree.
00435    *
00436    *  Input:   RootPtr  -  a pointer to the ubi_btRoot structure that indicates
00437    *                       the root of the tree to which NewNode is to be added.
00438    *           NewNode  -  a pointer to an ubi_btNode structure that is NOT
00439    *                       part of any tree.
00440    *           ItemPtr  -  A pointer to the sort key that is stored within
00441    *                       *NewNode.  ItemPtr MUST point to information stored
00442    *                       in *NewNode or an EXACT DUPLICATE.  The key data
00443    *                       indicated by ItemPtr is used to place the new node
00444    *                       into the tree.
00445    *           OldNode  -  a pointer to an ubi_btNodePtr.  When searching
00446    *                       the tree, a duplicate node may be found.  If
00447    *                       duplicates are allowed, then the new node will
00448    *                       be simply placed into the tree.  If duplicates
00449    *                       are not allowed, however, then one of two things
00450    *                       may happen.
00451    *                       1) if overwritting *is not* allowed, this
00452    *                          function will return FALSE (indicating that
00453    *                          the new node could not be inserted), and
00454    *                          *OldNode will point to the duplicate that is
00455    *                          still in the tree.
00456    *                       2) if overwritting *is* allowed, then this
00457    *                          function will swap **OldNode for *NewNode.
00458    *                          In this case, *OldNode will point to the node
00459    *                          that was removed (thus allowing you to free
00460    *                          the node).
00461    *                          **  If you are using overwrite mode, ALWAYS  **
00462    *                          ** check the return value of this parameter! **
00463    *                 Note: You may pass NULL in this parameter, the
00464    *                       function knows how to cope.  If you do this,
00465    *                       however, there will be no way to return a
00466    *                       pointer to an old (ie. replaced) node (which is
00467    *                       a problem if you are using overwrite mode).
00468    *
00469    *  Output:  a boolean value indicating success or failure.  The function
00470    *           will return FALSE if the node could not be added to the tree.
00471    *           Such failure will only occur if duplicates are not allowed,
00472    *           nodes cannot be overwritten, AND a duplicate key was found
00473    *           within the tree.
00474    * ------------------------------------------------------------------------ **
00475    */
00476   {
00477   ubi_btNodePtr OtherP,
00478                 parent = NULL;
00479   char          tmp;
00480 
00481   if( NULL == OldNode ) /* If they didn't give us a pointer, supply our own.  */
00482     OldNode = &OtherP;
00483 
00484   (void)ubi_btInitNode( NewNode );     /* Init the new node's BinTree fields. */
00485 
00486   /* Find a place for the new node. */
00487   *OldNode = TreeFind(ItemPtr, (RootPtr->root), &parent, &tmp, (RootPtr->cmp));
00488 
00489   /* Now add the node to the tree... */
00490   if( NULL == (*OldNode) )  /* The easy one: we have a space for a new node!  */
00491     {
00492     if( NULL == parent )
00493       RootPtr->root = NewNode;
00494     else
00495       {
00496       parent->Link[(int)tmp]      = NewNode;
00497       NewNode->Link[ubi_trPARENT] = parent;
00498       NewNode->gender             = tmp;
00499       }
00500     (RootPtr->count)++;
00501     return( ubi_trTRUE );
00502     }
00503 
00504   /* If we reach this point, we know that a duplicate node exists.  This
00505    * section adds the node to the tree if duplicate keys are allowed.
00506    */
00507   if( ubi_trDups_OK(RootPtr) )    /* Key exists, add duplicate */
00508     {
00509     ubi_btNodePtr q;
00510 
00511     tmp = ubi_trRIGHT;
00512     q = (*OldNode);
00513     *OldNode = NULL;
00514     while( NULL != q )
00515       {
00516       parent = q;
00517       if( tmp == ubi_trEQUAL )
00518         tmp = ubi_trRIGHT;
00519       q = q->Link[(int)tmp];
00520       if ( q )
00521         tmp = ubi_trAbNormal( (*(RootPtr->cmp))(ItemPtr, q) );
00522       }
00523     parent->Link[(int)tmp]       = NewNode;
00524     NewNode->Link[ubi_trPARENT]  = parent;
00525     NewNode->gender              = tmp;
00526     (RootPtr->count)++;
00527     return( ubi_trTRUE );
00528     }
00529 
00530   /* If we get to *this* point, we know that we are not allowed to have
00531    * duplicate nodes, but our node keys match, so... may we replace the
00532    * old one?
00533    */
00534   if( ubi_trOvwt_OK(RootPtr) )    /* Key exists, we replace */
00535     {
00536     if( NULL == parent )
00537       ReplaceNode( &(RootPtr->root), *OldNode, NewNode );
00538     else
00539       ReplaceNode( &(parent->Link[(int)((*OldNode)->gender)]),
00540                    *OldNode, NewNode );
00541     return( ubi_trTRUE );
00542     }
00543 
00544   return( ubi_trFALSE );      /* Failure: could not replace an existing node. */
00545   } /* ubi_btInsert */
00546 
00547 ubi_btNodePtr ubi_btRemove( ubi_btRootPtr RootPtr,
00548                             ubi_btNodePtr DeadNode )
00549   /* ------------------------------------------------------------------------ **
00550    * This function removes the indicated node from the tree.
00551    *
00552    *  Input:   RootPtr  -  A pointer to the header of the tree that contains
00553    *                       the node to be removed.
00554    *           DeadNode -  A pointer to the node that will be removed.
00555    *
00556    *  Output:  This function returns a pointer to the node that was removed
00557    *           from the tree (ie. the same as DeadNode).
00558    *
00559    *  Note:    The node MUST be in the tree indicated by RootPtr.  If not,
00560    *           strange and evil things will happen to your trees.
00561    * ------------------------------------------------------------------------ **
00562    */
00563   {
00564   ubi_btNodePtr p,
00565                *parentp;
00566   int           tmp;
00567 
00568   /* if the node has both left and right subtrees, then we have to swap
00569    * it with another node.  The other node we choose will be the Prev()ious
00570    * node, which is garunteed to have no RIGHT child.
00571    */
00572   if( (NULL != DeadNode->Link[ubi_trLEFT])
00573    && (NULL != DeadNode->Link[ubi_trRIGHT]) )
00574     SwapNodes( RootPtr, DeadNode, ubi_btPrev( DeadNode ) );
00575 
00576   /* The parent of the node to be deleted may be another node, or it may be
00577    * the root of the tree.  Since we're not sure, it's best just to have
00578    * a pointer to the parent pointer, whatever it is.
00579    */
00580   if( NULL == DeadNode->Link[ubi_trPARENT] )
00581     parentp = &( RootPtr->root );
00582   else
00583     parentp = &((DeadNode->Link[ubi_trPARENT])->Link[(int)(DeadNode->gender)]);
00584 
00585   /* Now link the parent to the only grand-child and patch up the gender. */
00586   tmp = ((DeadNode->Link[ubi_trLEFT])?ubi_trLEFT:ubi_trRIGHT);
00587 
00588   p = (DeadNode->Link[tmp]);
00589   if( NULL != p )
00590     {
00591     p->Link[ubi_trPARENT] = DeadNode->Link[ubi_trPARENT];
00592     p->gender       = DeadNode->gender;
00593     }
00594   (*parentp) = p;
00595 
00596   /* Finished, reduce the node count and return. */
00597   (RootPtr->count)--;
00598   return( DeadNode );
00599   } /* ubi_btRemove */
00600 
00601 ubi_btNodePtr ubi_btLocate( ubi_btRootPtr RootPtr,
00602                             ubi_btItemPtr FindMe,
00603                             ubi_trCompOps CompOp )
00604   /* ------------------------------------------------------------------------ **
00605    * The purpose of ubi_btLocate() is to find a node or set of nodes given
00606    * a target value and a "comparison operator".  The Locate() function is
00607    * more flexible and (in the case of trees that may contain dupicate keys)
00608    * more precise than the ubi_btFind() function.  The latter is faster,
00609    * but it only searches for exact matches and, if the tree contains
00610    * duplicates, Find() may return a pointer to any one of the duplicate-
00611    * keyed records.
00612    *
00613    *  Input:
00614    *     RootPtr  -  A pointer to the header of the tree to be searched.
00615    *     FindMe   -  An ubi_btItemPtr that indicates the key for which to
00616    *                 search.
00617    *     CompOp   -  One of the following:
00618    *                    CompOp     Return a pointer to the node with
00619    *                    ------     ---------------------------------
00620    *                   ubi_trLT - the last key value that is less
00621    *                              than FindMe.
00622    *                   ubi_trLE - the first key matching FindMe, or
00623    *                              the last key that is less than
00624    *                              FindMe.
00625    *                   ubi_trEQ - the first key matching FindMe.
00626    *                   ubi_trGE - the first key matching FindMe, or the
00627    *                              first key greater than FindMe.
00628    *                   ubi_trGT - the first key greater than FindMe.
00629    *  Output:
00630    *     A pointer to the node matching the criteria listed above under
00631    *     CompOp, or NULL if no node matched the criteria.
00632    *
00633    *  Notes:
00634    *     In the case of trees with duplicate keys, Locate() will behave as
00635    *     follows:
00636    *
00637    *     Find:  3                       Find: 3
00638    *     Keys:  1 2 2 2 3 3 3 3 3 4 4   Keys: 1 1 2 2 2 4 4 5 5 5 6
00639    *                  ^ ^         ^                   ^ ^
00640    *                 LT EQ        GT                 LE GE
00641    *
00642    *     That is, when returning a pointer to a node with a key that is LESS
00643    *     THAN the target key (FindMe), Locate() will return a pointer to the
00644    *     LAST matching node.
00645    *     When returning a pointer to a node with a key that is GREATER
00646    *     THAN the target key (FindMe), Locate() will return a pointer to the
00647    *     FIRST matching node.
00648    *
00649    *  See Also: ubi_btFind(), ubi_btFirstOf(), ubi_btLastOf().
00650    * ------------------------------------------------------------------------ **
00651    */
00652   {
00653   register ubi_btNodePtr p;
00654   ubi_btNodePtr   parent;
00655   char            whichkid;
00656 
00657   /* Start by searching for a matching node. */
00658   p = TreeFind( FindMe,
00659                 RootPtr->root,
00660                 &parent,
00661                 &whichkid,
00662                 RootPtr->cmp );
00663 
00664   if( NULL != p )    /* If we have found a match, we can resolve as follows:  */
00665     {
00666     switch( CompOp )
00667       {
00668       case ubi_trLT:            /* It's just a jump to the left...  */
00669         p = Border( RootPtr, FindMe, p, ubi_trLEFT );
00670         return( Neighbor( p, ubi_trLEFT ) );
00671       case ubi_trGT:            /* ...and then a jump to the right. */
00672         p = Border( RootPtr, FindMe, p, ubi_trRIGHT );
00673         return( Neighbor( p, ubi_trRIGHT ) );
00674       default:
00675         p = Border( RootPtr, FindMe, p, ubi_trLEFT );
00676         return( p );
00677       }
00678     }
00679 
00680   /* Else, no match. */
00681   if( ubi_trEQ == CompOp )    /* If we were looking for an exact match... */
00682     return( NULL );           /* ...forget it.                            */
00683 
00684   /* We can still return a valid result for GT, GE, LE, and LT.
00685    * <parent> points to a node with a value that is either just before or
00686    * just after the target value.
00687    * Remaining possibilities are LT and GT (including LE & GE).
00688    */
00689   if( (ubi_trLT == CompOp) || (ubi_trLE == CompOp) )
00690     return( (ubi_trLEFT == whichkid) ? Neighbor( parent, whichkid ) : parent );
00691   else
00692     return( (ubi_trRIGHT == whichkid) ? Neighbor( parent, whichkid ) : parent );
00693   } /* ubi_btLocate */
00694 
00695 ubi_btNodePtr ubi_btFind( ubi_btRootPtr RootPtr,
00696                           ubi_btItemPtr FindMe )
00697   /* ------------------------------------------------------------------------ **
00698    * This function performs a non-recursive search of a tree for any node
00699    * matching a specific key.
00700    *
00701    *  Input:
00702    *     RootPtr  -  a pointer to the header of the tree to be searched.
00703    *     FindMe   -  a pointer to the key value for which to search.
00704    *
00705    *  Output:
00706    *     A pointer to a node with a key that matches the key indicated by
00707    *     FindMe, or NULL if no such node was found.
00708    *
00709    *  Note:   In a tree that allows duplicates, the pointer returned *might
00710    *          not* point to the (sequentially) first occurance of the
00711    *          desired key.  In such a tree, it may be more useful to use
00712    *          ubi_btLocate().
00713    * ------------------------------------------------------------------------ **
00714    */
00715   {
00716   return( qFind( RootPtr->cmp, FindMe, RootPtr->root ) );
00717   } /* ubi_btFind */
00718 
00719 int ubi_btCheck( ubi_btRootPtr RootPtr,
00720                         ubi_btCheckFunc func,
00721                         void *UserData )
00722   /* ------------------------------------------------------------------------ **
00723    * This function performs a non-recursive search of a tree checking for any
00724    * node that matches the data supplied, by calling func.
00725    *
00726    *  Input:
00727    *     RootPtr  -  a pointer to the header of the tree to be searched.
00728    *     func     -  a pointer function to perform the check
00729    *     UserData -  a pointer to the user data to pass to func
00730    *
00731    *  Output:
00732    *     Returns 1 when found, 0 if not found
00733    *   
00734    *  Note:
00735    * ------------------------------------------------------------------------ **
00736    */
00737   {
00738   ubi_btNodePtr p = ubi_btFirst( RootPtr->root );
00739 
00740   while( NULL != p )
00741     {
00742     if ((*func)( p, UserData ))
00743       return ( 1 );
00744     p = ubi_btNext( p );
00745     }
00746   return( 0 );
00747   } /* ubi_btCheck */
00748 
00749 ubi_btNodePtr ubi_btNext( ubi_btNodePtr P )
00750   /* ------------------------------------------------------------------------ **
00751    * Given the node indicated by P, find the (sorted order) Next node in the
00752    * tree.
00753    *  Input:   P  -  a pointer to a node that exists in a binary tree.
00754    *  Output:  A pointer to the "next" node in the tree, or NULL if P pointed
00755    *           to the "last" node in the tree or was NULL.
00756    * ------------------------------------------------------------------------ **
00757    */
00758   {
00759   return( Neighbor( P, ubi_trRIGHT ) );
00760   } /* ubi_btNext */
00761 
00762 ubi_btNodePtr ubi_btPrev( ubi_btNodePtr P )
00763   /* ------------------------------------------------------------------------ **
00764    * Given the node indicated by P, find the (sorted order) Previous node in
00765    * the tree.
00766    *  Input:   P  -  a pointer to a node that exists in a binary tree.
00767    *  Output:  A pointer to the "previous" node in the tree, or NULL if P
00768    *           pointed to the "first" node in the tree or was NULL.
00769    * ------------------------------------------------------------------------ **
00770    */
00771   {
00772   return( Neighbor( P, ubi_trLEFT ) );
00773   } /* ubi_btPrev */
00774 
00775 ubi_btNodePtr ubi_btFirst( ubi_btNodePtr P )
00776   /* ------------------------------------------------------------------------ **
00777    * Given the node indicated by P, find the (sorted order) First node in the
00778    * subtree of which *P is the root.
00779    *  Input:   P  -  a pointer to a node that exists in a binary tree.
00780    *  Output:  A pointer to the "first" node in a subtree that has *P as its
00781    *           root.  This function will return NULL only if P is NULL.
00782    *  Note:    In general, you will be passing in the value of the root field
00783    *           of an ubi_btRoot structure.
00784    * ------------------------------------------------------------------------ **
00785    */
00786   {
00787   return( SubSlide( P, ubi_trLEFT ) );
00788   } /* ubi_btFirst */
00789 
00790 ubi_btNodePtr ubi_btLast( ubi_btNodePtr P )
00791   /* ------------------------------------------------------------------------ **
00792    * Given the node indicated by P, find the (sorted order) Last node in the
00793    * subtree of which *P is the root.
00794    *  Input:   P  -  a pointer to a node that exists in a binary tree.
00795    *  Output:  A pointer to the "last" node in a subtree that has *P as its
00796    *           root.  This function will return NULL only if P is NULL.
00797    *  Note:    In general, you will be passing in the value of the root field
00798    *           of an ubi_btRoot structure.
00799    * ------------------------------------------------------------------------ **
00800    */
00801   {
00802   return( SubSlide( P, ubi_trRIGHT ) );
00803   } /* ubi_btLast */
00804 
00805 ubi_btNodePtr ubi_btFirstOf( ubi_btRootPtr RootPtr,
00806                              ubi_btItemPtr MatchMe,
00807                              ubi_btNodePtr p )
00808   /* ------------------------------------------------------------------------ **
00809    * Given a tree that a allows duplicate keys, and a pointer to a node in
00810    * the tree, this function will return a pointer to the first (traversal
00811    * order) node with the same key value.
00812    *
00813    *  Input:  RootPtr - A pointer to the root of the tree.
00814    *          MatchMe - A pointer to the key value.  This should probably
00815    *                    point to the key within node *p.
00816    *          p       - A pointer to a node in the tree.
00817    *  Output: A pointer to the first node in the set of nodes with keys
00818    *          matching <FindMe>.
00819    *  Notes:  Node *p MUST be in the set of nodes with keys matching
00820    *          <FindMe>.  If not, this function will return NULL.
00821    *
00822    *          4.7: Bug found & fixed by Massimo Campostrini,
00823    *               Istituto Nazionale di Fisica Nucleare, Sezione di Pisa.
00824    *
00825    * ------------------------------------------------------------------------ **
00826    */
00827   {
00828   /* If our starting point is invalid, return NULL. */
00829   if( (NULL == p)
00830    || (ubi_trEQUAL != ubi_trAbNormal( (*(RootPtr->cmp))( MatchMe, p ) )) )
00831     return( NULL );
00832   return( Border( RootPtr, MatchMe, p, ubi_trLEFT ) );
00833   } /* ubi_btFirstOf */
00834 
00835 ubi_btNodePtr ubi_btLastOf( ubi_btRootPtr RootPtr,
00836                             ubi_btItemPtr MatchMe,
00837                             ubi_btNodePtr p )
00838   /* ------------------------------------------------------------------------ **
00839    * Given a tree that a allows duplicate keys, and a pointer to a node in
00840    * the tree, this function will return a pointer to the last (traversal
00841    * order) node with the same key value.
00842    *
00843    *  Input:  RootPtr - A pointer to the root of the tree.
00844    *          MatchMe - A pointer to the key value.  This should probably
00845    *                    point to the key within node *p.
00846    *          p       - A pointer to a node in the tree.
00847    *  Output: A pointer to the last node in the set of nodes with keys
00848    *          matching <FindMe>.
00849    *  Notes:  Node *p MUST be in the set of nodes with keys matching
00850    *          <FindMe>.  If not, this function will return NULL.
00851    *
00852    *          4.7: Bug found & fixed by Massimo Campostrini,
00853    *               Istituto Nazionale di Fisica Nucleare, Sezione di Pisa.
00854    *
00855    * ------------------------------------------------------------------------ **
00856    */
00857   {
00858   /* If our starting point is invalid, return NULL. */
00859   if( (NULL != p)
00860    || (ubi_trEQUAL != ubi_trAbNormal( (*(RootPtr->cmp))( MatchMe, p ) )) )
00861     return( NULL );
00862   return( Border( RootPtr, MatchMe, p, ubi_trRIGHT ) );
00863   } /* ubi_btLastOf */
00864 
00865 unsigned long ubi_btTraverse( ubi_btRootPtr   RootPtr,
00866                               ubi_btActionRtn EachNode,
00867                               void           *UserData )
00868   /* ------------------------------------------------------------------------ **
00869    * Traverse a tree in sorted order (non-recursively).  At each node, call
00870    * (*EachNode)(), passing a pointer to the current node, and UserData as the
00871    * second parameter.
00872    *
00873    *  Input:   RootPtr  -  a pointer to an ubi_btRoot structure that indicates
00874    *                       the tree to be traversed.
00875    *           EachNode -  a pointer to a function to be called at each node
00876    *                       as the node is visited.
00877    *           UserData -  a generic pointer that may point to anything that
00878    *                       you choose.
00879    *
00880    *  Output:  A count of the number of nodes visited.  This will be zero
00881    *           if the tree is empty.
00882    *
00883    * ------------------------------------------------------------------------ **
00884    */
00885   {
00886   ubi_btNodePtr p = ubi_btFirst( RootPtr->root );
00887   unsigned long count = 0;
00888 
00889   while( NULL != p )
00890     {
00891     (*EachNode)( p, UserData );
00892     count++;
00893     if(RootPtr->count != 0)
00894         p = ubi_btNext( p );
00895     else
00896         return count;
00897     }
00898   return( count );
00899   } /* ubi_btTraverse */
00900 
00901 unsigned long ubi_btTraverseReverse( ubi_btRootPtr   RootPtr,
00902                               ubi_btActionRtn EachNode,
00903                               void           *UserData )
00904   /* ------------------------------------------------------------------------ **
00905    * Traverse a tree in reverse sorted order (non-recursively).  At each node,
00906    * call (*EachNode)(), passing a pointer to the current node, and UserData
00907    * as the second parameter.
00908    *
00909    *  Input:   RootPtr  -  a pointer to an ubi_btRoot structure that indicates
00910    *                       the tree to be traversed.
00911    *           EachNode -  a pointer to a function to be called at each node
00912    *                       as the node is visited.
00913    *           UserData -  a generic pointer that may point to anything that
00914    *                       you choose.
00915    *
00916    *  Output:  A count of the number of nodes visited.  This will be zero
00917    *           if the tree is empty.
00918    *
00919    * ------------------------------------------------------------------------ **
00920    */
00921   {
00922   ubi_btNodePtr p = ubi_btLast( RootPtr->root );
00923   unsigned long count = 0;
00924 
00925   while( NULL != p )
00926     {
00927     (*EachNode)( p, UserData );
00928     count++;
00929     if(RootPtr->count != 0)
00930         p = ubi_btPrev( p );
00931     else
00932         return count;
00933     }
00934   return( count );
00935   } /* ubi_btTraverse */
00936 
00937 unsigned long ubi_btKillTree( ubi_btRootPtr     RootPtr,
00938                               ubi_btKillNodeRtn FreeNode )
00939   /* ------------------------------------------------------------------------ **
00940    * Delete an entire tree (non-recursively) and reinitialize the ubi_btRoot
00941    * structure.  Return a count of the number of nodes deleted.
00942    *
00943    *  Input:   RootPtr  -  a pointer to an ubi_btRoot structure that indicates
00944    *                       the root of the tree to delete.
00945    *           FreeNode -  a function that will be called for each node in the
00946    *                       tree to deallocate the memory used by the node.
00947    *
00948    *  Output:  The number of nodes removed from the tree.
00949    *           A value of 0 will be returned if:
00950    *           - The tree actually contains 0 entries.
00951    *           - the value of <RootPtr> is NULL, in which case the tree is
00952    *             assumed to be empty
00953    *           - the value of <FreeNode> is NULL, in which case entries
00954    *             cannot be removed, so 0 is returned.  *Make sure that you
00955    *             provide a valid value for <FreeNode>*.
00956    *           In all other cases, you should get a positive value equal to
00957    *           the value of RootPtr->count upon entry.
00958    *
00959    * ------------------------------------------------------------------------ **
00960    */
00961   {
00962   ubi_btNodePtr p, q;
00963   unsigned long count = 0;
00964 
00965   if( (NULL == RootPtr) || (NULL == FreeNode) )
00966     return( 0 );
00967 
00968   p = ubi_btFirst( RootPtr->root );
00969   while( NULL != p )
00970     {
00971     q = p;
00972     while( q->Link[ubi_trRIGHT] )
00973       q = SubSlide( q->Link[ubi_trRIGHT], ubi_trLEFT );
00974     p = q->Link[ubi_trPARENT];
00975     if( NULL != p )
00976       p->Link[ ((p->Link[ubi_trLEFT] == q)?ubi_trLEFT:ubi_trRIGHT) ] = NULL;
00977     (*FreeNode)((void *)q);
00978     count++;
00979     }
00980 
00981   /* overkill... */
00982   (void)ubi_btInitTree( RootPtr,
00983                         RootPtr->cmp,
00984                         RootPtr->flags );
00985   return( count );
00986   } /* ubi_btKillTree */
00987 
00988 ubi_btNodePtr ubi_btLeafNode( ubi_btNodePtr leader )
00989   /* ------------------------------------------------------------------------ **
00990    * Returns a pointer to a leaf node.
00991    *
00992    *  Input:  leader  - Pointer to a node at which to start the descent.
00993    *
00994    *  Output: A pointer to a leaf node selected in a somewhat arbitrary
00995    *          manner.
00996    *
00997    *  Notes:  I wrote this function because I was using splay trees as a
00998    *          database cache.  The cache had a maximum size on it, and I
00999    *          needed a way of choosing a node to sacrifice if the cache
01000    *          became full.  In a splay tree, less recently accessed nodes
01001    *          tend toward the bottom of the tree, meaning that leaf nodes
01002    *          are good candidates for removal.  (I really can't think of
01003    *          any other reason to use this function.)
01004    *        + In a simple binary tree or an AVL tree, the most recently
01005    *          added nodes tend to be nearer the bottom, making this a *bad*
01006    *          way to choose which node to remove from the cache.
01007    *        + Randomizing the traversal order is probably a good idea.  You
01008    *          can improve the randomization of leaf node selection by passing
01009    *          in pointers to nodes other than the root node each time.  A
01010    *          pointer to any node in the tree will do.  Of course, if you
01011    *          pass a pointer to a leaf node you'll get the same thing back.
01012    *
01013    * ------------------------------------------------------------------------ **
01014    */
01015   {
01016   ubi_btNodePtr follower = NULL;
01017   int           whichway = ubi_trLEFT;
01018 
01019   while( NULL != leader )
01020     {
01021     follower = leader;
01022     leader   = follower->Link[ whichway ];
01023     if( NULL == leader )
01024       {
01025       whichway = ubi_trRevWay( whichway );
01026       leader   = follower->Link[ whichway ];
01027       }
01028     }
01029 
01030   return( follower );
01031   } /* ubi_btLeafNode */
01032 
01033 int ubi_btModuleID( int size, char *list[] )
01034   /* ------------------------------------------------------------------------ **
01035    * Returns a set of strings that identify the module.
01036    *
01037    *  Input:  size  - The number of elements in the array <list>.
01038    *          list  - An array of pointers of type (char *).  This array
01039    *                  should, initially, be empty.  This function will fill
01040    *                  in the array with pointers to strings.
01041    *  Output: The number of elements of <list> that were used.  If this value
01042    *          is less than <size>, the values of the remaining elements are
01043    *          not guaranteed.
01044    *
01045    *  Notes:  Please keep in mind that the pointers returned indicate strings
01046    *          stored in static memory.  Don't free() them, don't write over
01047    *          them, etc.  Just read them.
01048    * ------------------------------------------------------------------------ **
01049    */
01050   {
01051   if( size > 0 )
01052     {
01053     list[0] = ModuleID;
01054     if( size > 1 )
01055       list[1] = NULL;
01056     return( 1 );
01057     }
01058   return( 0 );
01059   } /* ubi_btModuleID */
01060 
01061 
01062 /* ========================================================================== */

Generated on Sun May 14 14:51:19 2006 by  doxygen 1.4.2