
An Efficient Delivery Middleware - (DMIFWare)
For MPEG-4 Applications: Design,

Implementation and Experience

Deepak Jaiswal, Rajiv Chakravorty, Rajesh Babu
Multimedia Codec Group, Sasken Communication Technologies Limited, Bangalore, India

[djai | rajivc | rajeshb]@sasken.com

Abstract
This paper describes the novel design of a delivery framework for MPEG-4 applications. The delivery model
for MPEG-4 also called as DMIF (as recently standardized by ISO/IEC) is used as plug-ins for wide variety
of distributed real-time applications right from video conferencing to interactive virtual games. Our design
is in the form of a communication middleware that offers manifold advantages including increased
efficiency, dynamic transport channels with QoS support and dedicated functionality towards underlying
network stacks. MPEG-4 DMIF delivery middleware (termed here as DMIFWare) integrates three key
delivery technologies namely broadcast (e.g. HDTV), disk delivery (e.g. DVD, CD) and remote network
delivery. In this paper we describe the design and implementation of a middleware for remote network
delivery. Several issues have been taken into consideration so as to include design features like flexibility,
modularity, QoS support, programmable and interoperable transport stack along with issues that are
pertinent to an efficient DMIFWare design. Design features of DMIFWare were also compared with other
existing middleware design. The features incorporated within DMIFWare were found to be quite
satisfactory, even tough we believe that a seamless integration of other delivery technologies (disk delivery,
broadcast delivery) into our existing design will enhance the DMIFWare outlook.

1 Introduction
MPEG-4 [8][9][10][11][12] is a new standard from ISO/IEC for coding natural and synthetic audiovisual
data in the form of audiovisual objects that are arranged into an audiovisual scene by means of a scene
description. It provides the end-users a high level of interaction with content, within the limits set by the
author. The various operations that users are allowed:

1. Change the viewing/listening point of a scene (by navigation)
2. Drag media objects of a scene to different locations
3. Trigger cascade of events by clicking on a specific object (for e.g. start, stop, pause, rewind)
4. Multi-lingual track facility to select the desired language

MPEG-4 therefore offers a whole spectrum of services that includes complete integration of production,
distribution and content access across several delivery paradigms. In addition, it also offers to the service
provider the information about an application’s use of resources in a given network domain. This in turn
helps the service providers to apply suitable billing policies.
At the network level, information can be interpreted and translated into the appropriate native signaling
messages corresponding to a transport protocol stack. DDSP1protocol is used for such mapping purposes.

1
 Default DMIF signaling protocol

 2

MPEG-4 also provides a generic QoS parameter set to map different types of media streams. To guarantee
QoS support for the application it is necessary to have an efficient mapping across each of these QoS
parameter set with respect to the underlying network QoS parameters.

In future, wireless technology will be required to support delivery of multimedia services to mobile terminals
with QoS guarantees. The networks supporting these terminals will have a high degree of fluctuating support
towards Quality of Service (due to packet loss, fading effects etc.). Since MPEG-4 supports dynamic
addition and deletion of transport channels (depending upon availability), a middleware supporting it should
posses adequate flexibility to manage QoS even in an environment prone to high degree of QoS fluctuation.
Therefore, a delivery framework that supports all kinds of heterogeneous network stacks in addition to
providing QoS support is what is deemed necessary in any delivery model.

The paper describes an efficient design of a delivery framework for MPEG-4 applications. The design is
flexible in order to incorporate all types of current and future delivery technologies (including wireless
domains). Design efficiency is high since it offers a low response time essential to provide multimedia
services even to a resource constrained terminal (in terms of CPU, memory etc.). Depending upon the
requirements of the user application, network channels can be dynamically reconfigured, added or released.
Each such channel will have an appropriate QoS parameter set depending upon the nature of the specific
audiovisual objects; so as to provide QoS support to the application. However, support to QoS in various
networks is still devoid of the desired QoS guarantees. Internet is one such example that comprises of
various heterogeneous networks where QoS guarantees are absent. In near future, QoS support to the Internet
is expected from various quarters such as IntServ2 (RSVP) [14] and/or DiffServ3 [16] – MPLS4[15]. In this
paper, we will discuss about design modifications at the delivery layer that can ensure QoS at the network
level using one of these techniques.

The paper is structured as follows: The next section provides a brief overview of the MPEG–4 DMIF
standard. It provides the MPEG-4 DMIF overview, explains the MPEG-4 system architecture, DMIF
computation model and also the architectural framework of DMIF in the form of a middleware (DMIFWare).
Section 3 gives a description of the DMIFWare system along with implementation specific details of the
design. Here it describes issues related to DMIFWare functionality, DAI/DNI primitives, signaling aspects
and also elaborates on design optimizations related to DMIFWare. In section 4, we evaluate the MPEG-4
QoS at each levels (by using a layered model) and discuss how DMIFWare can be used to provide network
QoS by negotiating resources from the network. Some important features like group delivery support (i.e.
multicasting) and issues related to security are discussed in section 5. Other middleware architectures are
discussed in section 6 and a feature/functionality-based comparison is performed to ratify our DMIFWare
design. Finally, open issues are discussed that are pertinent to an enhanced DMIFWare design applicable for
the future.

2 MPEG-4 DMIF Overview
The DMIF architecture is such that the applications that rely on DMIF for communications do not have to be
concerned with the underlying communication methods. The implementation of DMIF takes care of the
details of delivery technology thereby presenting a common interface to the application.

An application accesses data through the DMIF-Application Interface (DAI) as shown in Figure 1. This is
irrespective of whether such data comes from a broadcast/local storage/remote server. A delivery layer
implementation allows the concurrent presence of more than one DMIF instance. Each DMIF instance is
delivery unaware and responsible for managing a given delivery technology. When requesting a specific
service, the application supplies a Uniform Resource Locator (URL) that allows the delivery layer to
determine the appropriate DMIF instance to activate.

2 Integrated Services QoS model (uses RSVP protocol)
3 Differentiated Services
4 Multi Protocol Label switching

 3

The DMIF instance will then translate the originating application requests into specific actions5 or translate it
into messages6, thereby taking care of the specific delivery technology. Similarly, data entering the terminal
is uniformly delivered to the originating application through the DAI. The DAI allows the DMIF user to
group elementary streams into services and to specify the QoS requirements for the desired elementary
streams.

Figure 1: Architecture of Delivery Multimedia Integration Framework

DMIF separates the common features that should be implemented in each DMIF instance from the details of
the delivery technology. In the case of interactive networks, DMIF specifies a logical interface (the DMIF-
Network Interface (DNI)) between a hypothetical module implementing the common features and the
network specific modules. The DNI specifies the information flow that should occur between peers of such
hypothetical modules. The network specific module specifies the mapping of the DNI primitives into
signaling messages.

In case of broadcast and local storage scenarios, the model is simpler and no internal interface has been
identified. Conceptually, each DMIF instance interacts with a module which implements the features of a
target DMIF peer as well as those of the target application. This implies that, in this case the DMIF instance
is not unaware of the application making use of it.

2.1 MPEG-4 System Architecture : An Overview
The system architecture for MPEG-4 can be effectively defined using the three layers i.e., compression layer,
synchronization layer and underlying delivery layer. Figure 2 shows such an abstraction. The compression
layer processes individual audiovisual media streams independent of the underlying delivery technology.
MPEG-4 can achieve compression using efficient encoding from a few kbps to multiple Mbps. The output of
this layer is the audiovisual media streams organized into elementary streams. The compression layer is only
media aware. The interface between this layer and the syncronization later is termed as Elementary Stream
Interface (ESI). Creation of distributed and integrated content presentations necessitates establishment of

5 To be taken for the broadcast media or the local file system.
6 To be delivered to the target application.

O
rig

in
at

in
g

M
P

E
G

-4
 A

pp
lic

at
io

n

D
M

IF
 M

an
ag

er
 &

 F
ilt

er

Originating DMIF
Instance(s) for

Broadcast

Originating DMIF
Instance(s) for

Local Files

Originating DMIF
Instance(s) for

Remote Interaction

File system services to
manage sessions and

data channels
Local

Storage

Services to manage
broadcast sessions and

data channels
Broadcast

Network specific
module for

Signaling Maps

Native Signaling
Stack

(TransMux)

Native Network

Target Native
Signaling

Stack

Target
Signaling

Maps

Target DMIF
Instance

T
ar

ge
t D

M
IF

 M
an

ag
er

T
ar

ge
t D

M
IF

 A
p
p
lic

at
io

n

DAI
DNI

DNI

DAI

Flows between independent systems.

Flows internal to a single system.

 4

relationships between the elementary streams, in addition to enabling synchronization between them. The
synchronization layer is therefore both media and delivery unaware.

Figure 2: MPEG-4 System Architecture

The delivery layer in MPEG-4 is primarily an integration framework. It provides a transparent access to
delivery of content irrespective of the underlying techology used by offering content location independent
procedures for establishing MPEG-4 sessions and access to data channels. The DDSP signaling protocol
interacts with the lower (network) layer so as to map the messages appropriately to be sent over the network
to a remote interactive peer.

2.2 DMIF Computation Model
The DMIF computation model provides a high level view of a service activation and start of data exchange
between two DMIF peers. Figure 3 shows the end-to-end signaling communication path that is established
for transfer of control messages. The basic necessity of a computation model here is to identify the need of a
user plane and a control plane.

The computation model for MPEG-4 DMIF is described below:

1. The originating application requests the activation of a service to its local DMIF Layer: a communication
path between the originating application and its local DMIF layer is established in the control plane (C1 -
plane).

Figure 3: DMIF Computation Model

2. The originating DMIF then establishes a network connection with the target DMIF peer: a
communication path between the originating DMIF peer and target DMIF peer is established in the
control plane (C2-plane).

 APP1

 APP2

 APP1

 APP2

C1
C2

C3
U-U U-U U-U

User Plane

Control Plane

 DMIF DMIF

 APP1

Originating Application Target Application

COMPRESSION LAYER

SYNCHRONIZATION LAYER

DELIVERY LAYER

Media aware

Delivery unaware

Media unaware

Delivery unaware

Media unaware

Delivery aware

DAI

 ESI

 5

3. The target DMIF peer identifies the target application and forwards the service activation request: a
communication path between the target DMIF peer and the target application is established in the control
plane (C3-plane).

4. The peer applications create channels requests flowing through paths C1, C2 and C3 plane. The user
plane (U-U) will exchange the actual data by the applications.

DMIF therefore allows the concurrent presence of one or more DMIF instances, each one targeted for a
particular delivery technology, in order to support multiple delivery technologies (broadcast, local storage,
remote interactive) within a given terminal. Multiple delivery technologies may be activated by the same
application that in turn can seamlessly manage data transfer across each of these delivery technologies.

2.3 DMIFWare Architectural Framework
Our design of the DMIF interface forms part of a (communication) middleware that is end-system based and
located between the network access and applications (Figure 4). The middleware has access to all the
underlying network resources. As the application does not need to care about differences in transport
mechanisms used, properties and especially semantics of different transport mechanisms are hidden away.
The level of abstraction provided by the transport modules is a part of the configured communication
protocol. The DMIFWare resides once per workstation (or terminal), while multiple applications might use
the middleware. The DAI translates the request into appropriate actions to be taken with respect to the
broadcast network, local file system or into messages delivered to the target application.

Figure 4: DMIF Middleware (DMIFWare) Architecture

In case of remote interactive network, the network side of the DMIFWare uses the DNI (DMIF Network
Interface) primitive to invoke the control message signaling. DNI is a set of primitives to be invoked
whenever a control message needs to be generated from the native signalling stack (NSS) of the DMIF to be
sent over the network. The native signaling stack uses TCP as the transport for exchanging the control
messages across the network. Here the communication primitives are assumed to be a part of operating
system. However unlike control messages which use TCP channels, data is sent over the UDP channels as it
is a real time data. This is compliant to the requirements of any real time application; to eliminate any
retransmission overhead for data packets that are lost during the transfer.

3 DMIFWare System Design
We have extended the multimedia middleware design beyond traditionally layered communication
architectures that avoid common design pitfalls in multimedia communications, such as reduced efficiency
and flexibility. We have also maintained considerable modularity to integrate and support any other key
design features that needs to be incorporated within DMIFWare in the near future.

 MPEG-4 Application programs

 Network(s) Access

 Operating System

DMIF Middleware (DMIFWare)

DMIF Application Interface (DAI)

DNI
Communication Primitives

(Transport - TCP)

 6

3.1 DMIFWare Functionality
Our design of the DMIFWare is object-oriented. Each of the functional entity is implemented in a C++ class.
Figure 5 depicts the various modules of the DMIF layer along with their functionality. All the components
involved during the creation of a service along with their inter-relationship are based on the computation
model discussed in section 2.2. The architecture therefore encompasses a signaling plane (control plane) and
a data-plane. The following explains the functionality of each of the modules in brief within DMIFWare:

• DMIF Filter and Manager: The main responsibility of this module is to manage (initialize, de-
initialize, configure, reset) the various modules in the DMIF layer. For each DAI primitive called by the
application layer, it forwards the parameters passed to the appropriate DMIF module. Control messages
and data packets received from the interacting peer terminal are forwarded to the appropriate application.

• DMIF Instance: This module handles all the communication that takes place with remote peers using a
particular delivery mechanism. The functionality of DMIF instance are listed below:

1. Manage the service session provided to application layer

2. Manage network wide session with the remote peer using DNI calls

3. Map service session to network session to optimize network resources

Figure 5: DMIFWare Architectural Framework

4. Map Elementary Stream channels either to FlexMux or TransMux7 streams based on QoS
requirements

5. Translate elementary streams QoS requirements to actual network resources (network QoS)

• FlexMux Module: It allows grouping of elementary streams with a low multiplexing overhead.
Multiplexing is used to group elementary streams with similar QoS requirements to reduce network
connections and bandwidth requirements.

• Native Signaling Stack (NSS): This module is responsible for generating control messages (signals)
using a DNI call based on DDSP protocol. It also receives control messages from the remote peer and

7 Transport layer multiplexing (Transmux) of audiovisual streams

DAI Control Primitives DAI User Primitives

DMIF Filter and Manager

DMIF instance:

Generating and receiving
DNI function call

Native Signaling Stack

FlexMux
Module

Transmitting and
receive Module:

Native Transport Stack (TransMux)
Signaling TransMux Channels

DMIF Application Interface

DNI

User Plane Control

C
on

tr
ol

 P
la

ne
 I

nt
er

ac
ti

on
.

U
se

r
–

P
la

ne
 I

nt
er

ac
ti

on

 7

maps them to other modules of the DMIFWare for further handling. It explicitly uses a thread called as
ReadThread to manage the signaling channels. This module is described in section 3.5

• Transmit and Receive Module: It uses a third thread termed as Transmit and Receive Thread for
management of data. This module receives data packets either from the FlexMux module or directly
from the application layer using the DAI primitive. The data packets received from the higher module is
transmitted over the TransMux channel (UDP based) provided by the native network. The data packets
received over the TransMux channels are appropriately forwarded either to the FlexMux module or to
the application layer.

• Native Transport Stack: This stack is responsible for communication over the actual native network
connecting the two remote peers. Presently the DMIFWare design uses TCP/UDP (native transport
stack) as the delivery technology for control message signaling and data transfer respectively.

3.2 DMIF Application Interface (DAI)
DAI is the interface visible to the application programmers at the end-systems for the DMIFWare. It is
responsible for hiding all the transport details from the application user. The interface supports passage of
both data streams as well as control message flow from the DMIFWare. DAI primitives enable the user to
specify the QoS requirements for each of the data streams that allow the mapping of the application QoS
requirements to the corresponding transport channels. The user requests made across the DAI are also
translated to the corresponding DNI requests. The DAI is composed of three different types of primitive
classes:

• Service Primitives – allows management of service sessions (attach and detach).

• Channel Primitives – allows management of data channels (add and delete).

• Data Primitives – serves the purpose of transferring data through channels.

The following table describes different primitives in DAI in order to request a certain service or establish
desired data channels across any delivery technology including a remote interactive peer.

Primitives Description

DA_ServiceAttachReq Opens a service session to the specified destination (target DMIF - in case of
remote interactive network)

DA_ServiceDetachReq Closes the service session.

DA_ChannelAddReq Requests the addition of a new data channel for the application within a
service session

DA_ChannelDeleteReq Requests for the deletion of a data channel

DA_UserCommand Used by the application to send application level command (e.g., PLAY,
STOP, PAUSE, and RESUME) to the peer application.

DA_Data It is used to send user -to- user application data from originating DMIF to the
destination (target DMIF – in case of remote interactive network)

Table 1: DMIF Application Interface

3.3 DNI – DMIF Network Interface
To allow flexibility in the design, the DNI separates the Native Signaling Stack (NSS) from the rest of the
DMIF module. The idea here is to de-couple the NSS module from other DMIF modules since NSS is
largely depended upon underlying transport protocol. Our design considers the conventional Internet
transport protocol stack i.e. TCP for control signaling. DMIF instances can be added for various delivery
technologies (e.g. AAL5/ATM etc.) depending upon the requirements. Thus, DNI models the signaling
message exchange between DMIF peers irrespective of the type of delivery mechanism.

 8

The following primitives (along with their description) are used as a part of DNI:

Primitives Description

DN_SessionSetupReq Request to set up a network session with the remote DMIF peer

DN_SessionReleaseReq Request to release an existing network session

DN_ServiceAttachReq Request to attach to the desired service of a network session.

DN_ServiceDetachReq Request to detach an existing service from the network session

DN_TransMuxSetupReq Request for starting a new TransMux channel

DN_TransMuxReleaseReq Request to release an existing TransMux channel

DN_TransMuxConfigReq Request to reconfigure one or more TransMux channels previously
established inside a network session

DN_ChannelAddReq Request to add new data channels for the application (channel added by the
target DMIF)

DN_ChannelAddedReq Request to add new data channels for the application (channel added by the
originating DMIF)

DN_ChannelDeleteReq Request to delete the existing data channels

DN_UserCommand Request to send application level command (e.g., PLAY, STOP, PAUSE,
and RESUME) to the remote DMIF peer.

Table 2: DMIF Network Interface (DNI) Primitive Description

As the table illustrates, many of the primitives in the DNI are similar to the primitives used in DAI.
However, some other primitives like DN_SessionSetupReq/ReleaseReq and DN_TransMuxSetupReq/
ReleaseReq are in addition to that already present in the DAI. The DNI therefore provides an interface to
separate Native Network Stack (NSS) module from the rest of the DMIF that are functionally independent of
an underlying network stack. This technique provides large design flexibility and reusability in terms of
system components.

3.4 Control – Plane Message Signaling in DMIF
The control messaging across two DMIF peers should take place at the C-plane before the actual application
level data transfer happens. To invoke any control message across the network, the user application should
first invoke one of the DAI primitives. The contexts of these message exchange across the two peer depends
upon three types of primitive (i.e. service primitive, channel primitive or data primitive) that can be invoked.
The MPEG-4 DMIF standard specifies the syntax of the control messages to any request made for a given
service. The request can be for a service invocation from a remote peer or else related to a new channel
addition or existing channel deletions. All the DAI primitives the application user can invoke are described
in section 3.2. For brevity, we look into two examples that involve signaling issues across two DMIF peers.
The first scenario explains signaling involved in initiating a service across two DMIF peers while the second
one describes a channel addition by an originating DMIF peer. (For other scenarios refer [11]).

3.4.1 Service Initiation in DMIF
The originating DMIF initiates a service session by calling the DA_ServiceAttachReq primitive of DAI
interface consisting of the URL along with upper layer information (Step A) (refer Figure 6). If a network
session to the remote peer already exists, it will skip (Step B) and will directly invoke the
DN_ServiceAttachReq from the DNI primitives (step D). If the network session to that peer does not exist, it
will invoke a DN_SessionSetupReq primitive using the DNI primitive (Step B). This request will reach the
target DMIF; it now has the knowledge of the new network session and then replies (Step C) back to the

 9

originating DMIF with a DN_SessionSetupRsp primitive. Once the new network session is established, the
originating DMIF then requests (Step D) for the desired service using DN_ServiceAttachReq of the DNI
primitive. Once the target DMIF gets the service request, it invokes a callback function
DN_ServiceAttachInd (Step E) to indicate the target DMIF application user about the requested service. The
target application interprets the data and replies with a DA_ServiceAttachCnf (Step F) back to the target
DMIF.

Figure 6: Service initiation in a remote interactive DMIF (ISO/IEC – 14496/6)

The target DMIF then invokes the DN_ServiceAttachRsp and sends the response message to the originating
DMIF. The originating DMIF in turn invokes the DA_ServiceAttachRsp callback function to provide a
response to the request made by the application. However, before making a service initiation request the
originating DMIF must have the URL (from session directory, email etc.) and also the requested service
registered at the target DMIF.

3.4.2 Dynamic Channel Addition by Originating DMIF
The addition of channels requires two preconditions:

1. Service between the originating and target applications has been initiated successfully.

2. Location of the source stream is available from previous interaction.

Figure 7 shows the scenario for channel additions by the originating DMIF. The originating application
passes a DA_ChannelAddReq to indicate (Step A) that it requires data channels. QoS parameter, direction
and other application level information characterize each of the channels. The DMIF layer inspects the
network resources against the request made (by checking the media stream QoS metrics) and if the network
resources are not sufficient, invokes (Step B) the DN_TransMuxSetupReq function from the DNI primitive.
The target DMIF receives the request, associates it to network resources of a particular network session. It
then replies (Step C) with the DN_TransMuxSetupRsp that sends the response back to the originating DMIF.
The originating DMIF creates a channel and sends this channel information to the target DMIF using
DN_ChannelAddedReq function (Step D) of the DNI.

The target DMIF receives the request that in turn invokes the DA_ChannelAddInd (indication) function
(Step E) and informs the target application with all the channel information sent by the originating DMIF.
The target application interprets the application information and replies (Step F) with a response code in the
form of DA_ChannelAddCnf function to the target DMIF. The target DMIF then sends back a response
message using DN_ChannelAddedRsp function with DMIF. This message then reaches the originating
DMIF that informs the originating application using DA_ChannelAddRsp function to indicate that the given
channel have been added.

Originating DMIF Target DMIF

NETWORK

DN_SessionSetupReq

DN_SessionSetupRsp

 DA_ServiceAttachReq

DN_ServiceAttachReq

 DA_ServiceAttachInd

DN_ServiceAttachRsp
DA_ServiceAttachRsp

DMIF Layer DMIF Layer
DAI DAI

 C

B

 A

 F

 E

 DA_ServiceAttachCnf

 10

Figure 7: Addition of channels by the originating DMIF (ISO/IEC –14496/6)

The other case of message signaling involves addition of channels by the target DMIF peer. Similarly the
deletion of channels can also take place by making appropriate signaling requests. All such signaling issues
related to MPEG-4 -DMIF has been already discussed in the standard [11].

3.5 Native Signaling Stack (NSS)
The basic functionality of this module is to implement the DDSP protocol in order to enable MPEG-4
multimedia communication over the Internet. At the originating DMIF, DDSP protocol generates control
messages to be sent over the network.

Figure 8: Location of Native Signaling Stack (NSS)

Invocation of any of the DNI primitive generates a control message over the network to a remote destination.
The signaling can be for session setup, session release, service initiation, service release, channel addition or
channel deletion which are compliant to the signaling strategy as discussed in earlier section.

Figure 8 shows the position of NSS along with the transport stack. Any of the primitives (as in section 3.3)
can be invoked to generate the required control message to be sent over the network. The NSS signaling
based on DDSP protocol that adheres to the reference DMIF standard [11].

NETWORK PROTOCOL (IP)

TCP UDP

Native Signaling Stack

DNI
MPEG-4 Data

DDSP
messages

MPEG-4 data

Transmit & Receive Module

Transport Stack

Part of the DMIFWare

Communication
primitives

Originating DMIF Target DMIF

NETWORK

DN_TransMuxSetupReq

DN_TransMuxSetupRsp

 DA_ChannelAddReq

DN_ChannelAddedReq
D

 DA_ChannelAddInd

DN_ChannelAddedRsp
DA_ChannelAddRsp

DMIF Layer DMIF Layer
DAI DAI

 C

B

 A

 F

 E

 DA_ChannelAddCnf

 11

3.6 Design Optimizations in DMIFWare
The complete DMIFWare is implemented as a 32-bit interface (for DAI and DNI) that uses the C++
environment based on Microsoft Visual C++ compiler (v6.0). DMIFWare runs under the Windows NT 4.0
OS (also extendible to Windows 95 platform) in a Pentium machine.

 DMIFWare functionality is divided according to its usage in three different threads. The idea here is to
reduce the number of threads so as to decrease response time. We have carefully optimized the usage of
threads and made sure that none of the threads are blocked in any of the function calls within DMIFWare.
The first thread (Thread-1) (see Figure 9) is the main application thread that the application user invokes for
any of the DAxx_Req (DAI) primitives. This is the normal thread that runs through DMIFWare to finally
invoke the corresponding DNxx_Req of DNI primitive. By invoking a DNxx_Req primitive, a DSxx_Req
control message is sent over the network. The other thread (Thread - 2) called as ReadThread is created
when the NSS module is instantiated that accepts any connect request made from a remote peer and also
receives a control (signaling) message that arrives after the connection is established.

Figure 9: Thread Usage and Call Sequence in DMIFWare

When the ReadThread receives the control message, it forwards it to the appropriate message handler (not
shown) to service the request. This request made to the message handler invokes the DNxx_ind (indication)
function and which calls a callback function that puts this message into a queue. The main application thread
reads the message posted in the queue and processes each of the messages in succession. After processing a
message, the thread then invokes the corresponding DAxx_Cnf (confirmation) function that goes all the way
to invoke DNxx_Cnf and generates DSxx_Rsp (response) message to be sent up over the network to the
originating DMIF. Finally, the originating DMIF gets back the DSxx_Rsp (response) message that completes
the request. A third thread in Transmit and Receive module is used to send and receive data. This thread
called as the Transmit and Receive Thread is used to manage data channels i.e. sending and receiving of data
from remote peers. However, this thread is not related to the control signaling aspects of DMIFWare. The
obvious advantage here is the separation of data and controls path that in turn provides high efficiency along
the data path [21].

Other types of design optimizations include reducing the time to copy packets (especially the larger ones)
using the C-library call memcpy. In fact we have reduced the usage of memcpy to almost nil in our
design. This results into significant improvements in the response time of the DMIFWare interfaces. The
maximum throughput that governs the performance of the DMIFWare depends to a large extent on
optimizing the usage of threads and simultaneously reducing the memory accesses. DMIFWare also
optimizes the use of objects (e.g. synchronization objects (mutexes) etc.) inherent to an applied operating
system. Synchronization objects have been used only when synchronization between the threads was found
to be necessary.

DMIFWare exchanges control data between two remote applications using winsock2 API. Winsock2 API
primarily provides a protocol-independent transport interface that is fully capable of supporting emerging
networking capabilities including real-time multimedia communications [7].

Originating DMIFWare

DAxx_Req

Thread – 1

Main Appl. Thread

DAI DN
DNxx_Req

DNxx_Rsp

DAI DN
I DNxx_ind

 DNxx_Cnf

DSxx_Req DSxx_Rsp

Target DMIFWare NETWORK

Thread – 2

(ReadThread)

Thread – 1

Main application Thread

DA_xxCnf

Thread – 3

(Transmit & Receive
Thread)

 12

4 QoS Support for DMIFWare
To achieve an end-to-end guaranteed Quality of service (QoS) along multimedia communication paths for
distributed multimedia applications, we need to provide services and protocols in the end-points and
networks which understand the mapping issues related to QoS at each of these levels [6]. QoS mapping at
each level is discussed here to determine their interrelationships with DMIFWare that in turn provides a
complete QoS management architecture for MPEG-4 system.

4.1 Mapping QoS in MPEG-4
As illustrated in Figure 10 MPEG-4 system includes the application and the delivery middleware. Our
middleware is in between the MPEG-4 application and the underlying transport protocol stack. The QoS is
distributed across each of these layers. In other words if we consider end-point layered QoS architecture
[4][5], we can separate QoS into application QoS (e.g., 25 frames/sec), System QoS (e.g. 50 ms period/cycle)
and network QoS (e.g.16 Mbps). In addition User QoS (also called perceptual QoS e.g. CD quality) is also
specified to complete the QoS mapping. DMIFWare falls into the category of System QoS. Hence parameters
that relate to CPU (or memory) such as computation time, cycle time and CPU utilization directly affects the
system level QoS. DMIFWare being a part of system QoS should necessarily have an efficient design to
optimize over these parameters. This in turn can significantly improve system level QoS.

Figure 10: QoS mapping in MPEG-4 System

4.2 Application Level QoS
The application level QoS in MPEG-4 mostly constitutes the QoS applicable at the compression layer. The
compression layer is responsible for encoding and decoding of elementary streams that in turn specifies the
processing requirements. There are several parameters affecting QoS in MPEG-4 at this level (for e.g. frame
size and frame rate, number of frames per Group of Pictures (GOP), compression pattern (I, P, B) etc.).
MPEG-4 compression layer performs encoding that enables bandwidth requirements from few Kbps to
couple of Mbps. The application level QoS in MPEG-4 is therefore highly varying and mostly dependent
upon the application requirements.

4.3 System Level QoS
All sorts of reusable components between application and the underlying network decide the system level
QoS. These include the operating system, filters, device drivers and all additional middleware components.
Middleware QoS and transport QoS both add up to give the resultant system QoS. In our design, DMIFWare
as well as the underlying transport stack both in combination will specify the system level QoS. Hence any
additional component incorporated (e.g. authentication and encryption) within DMIFWare will directly
increase the CPU requirements and thereby degrade QoS at the system level. An efficient middleware design

Layers:

Application QoS

Middleware QoS

Transport QoS

Network QoS

MPEG-4 Client -1 MPEG-4 Client-2

DMIFWare

Operating System

Delivery Network

DMIFWare

Operating System

Delivery Network

Network Transmission

Raw QoS

Optimized QoS

 13

is therefore a must for optimization of system level QoS. In case of DMIFWare, we have optimized the use
of all types of components (e.g. thread usage, memory copy etc) that can significantly reduce the QoS at this
level.

4.4 Network Level QoS
All levels of QoS discussed earlier specify only the end-system QoS. Specifying QoS at the network level
requires a QoS broker that can arbitrate for QoS at that level. To accomplish this we should involve protocols
that can communicate the application requirements using explicit admission control to all the elements in a
network. This is possible by using resource reservation protocol (RSVP). RSVP is a working protocol of the
IntServ QoS model for the Internet. To ensure QoS guarantees in a network, all network elements (routers)
should support RSVP. Microsoft’s winsock2 API provides the required interface to negotiate parameters
such as bandwidth and latency to achieve the desired service levels of QoS for a given communication
service. Our framework to implement “network QoS” integrates winsock2 GQoS8 [12] that provides QoS
support at the network level using RSVP. Currently, the facility to support RSVP using GQoS is available
only in Windows 98 and Windows NT 5.0 beta machine. Therefore, our DMIFware integration paradigm to
support “network QoS” is available only with terminals supporting these OS’es.

4.4.1 Winsock2 GQoS
The QoS enabled service provider in these terminals (NT 5.0 and Widows 98) is called as QoSSP (QoS
Service Provider) which is a part of the operating system [7].

Figure 11: Architecture of Generic QoS (GQoS)

It is a layer on top of the base service provider (BASESP) (Figure 11) which invokes resource reservation
protocol (RSVP) to signal the network to do resource allocation so as to satisfy QoS requests made by the
applications. QoSSP also configures the kernel traffic control in compliance with the QoS negotiated with
the network.

The QoSSP intercepts and handles all QoS related Winsock2 API calls. The RSVP service process
implements the RSVP protocol for network signaling. The QoSSP interacts with RSVP service via the
RAPI9 interface. Kernel traffic control is activated indirectly by QoSSP via the RSVP service process, which
uses the Traffic Control interface (TCI).

8 generic quality of service
9 RSVP Application Programming Interface

GQoS APP

Winsock2 (dll)

QoSSP
(dll)

BASESP
RSVP

Service

 (exe)

KERNEL

TRAFFIC

CONTROL TCP/UDP

IP

RAPI
TCI

 14

4.4.2 Integrating DMIFWare with RSVP enabled winsock2 GQOS
To integrate DMIFWare with winsock2 GQoS, use of QoS enabled data structures and API calls are
required. A QoS aware application can specify the QoS parameters of its sent and received traffic in the
FlowSpec structures within a QoS structure. (Refer Appendix-A for all QoS enabled data structures)

The flowspec may then be included with QoS-related calls (for e.g. WSAConnect, WSAJoinLeaf,
WSAAccept, and WSAIoctl (SIO_SET_QOS) [[13], see appendix-A]). Each of these QoS-related calls
specifies a particular socket to which the call applies. Thus, QoS is invoked relative to a particular socket. A
socket, on which QoS has been invoked, is said to be a QoS Socket.

Figure 12: Integrating DMIFWare with Winsock2 – GQoS [Win’NT(5.0)/Win’98]

To enable GQoS for RSVP, the DMIFWare should request for the QoS sockets (see Figure 12). All the QoS
related calls are mapped to the flow specifications [Appendix-A] according to the requirements set by the
user application. Depending upon the MPEG-4 application, DMIFWare will decide which types of service
(guaranteed, controlled load or best effort) would be suitable for the application. This decision can be based
upon the application traffic characteristics, performance requirements and the user preference. Since MPEG-
4 application provides real time data, they should be mapped either to controlled load service or guaranteed
service. RSVP signaling is invoked only if the type of service is set to either guaranteed service or controlled
load service. Triggering of the RSVP control messages (path and resv) begins only after the sender has
invoked one of the QoS-related calls along with the socket unambiguously bound to a local address.

In case a network is not RSVP capable, the QoSSP can be used in a pass-through mode, in which case it will
invoke local traffic control functionality (TCI) without RSVP signaling.

4.5 Network Resource Optimization using DMIFWare
DMIFWare provide considerable flexibility in terms of number of transport channels; their bandwidth and
QoS requirements. Such requirement is essential in the case of MPEG-4 applications that calls for dynamic
establishment of data channels with varying QoS parameters. In Figure 10, we find that the QoS available to
DMIFWare from the underlying transport layer is the raw QoS. DMIFWare negotiates the right amount of
QoS available from these lower layers by mapping that many numbers of data channels to corresponding
transport channels that are required for the application.

Winsock2 (dll)

QoSSP (dll)

BASESP
RSVP

Service

(exe)

KERNEL

TRAFFIC

CONTROL
TCP/UDP

IP

RAPI
TCI

MPEG-4 Application

DMIFWare (middleware)

MPEG-4 System

Winsock2 - GQoS

 15

Figure 13: Resource Management process in DMIFWare

In other words, this type of dynamic support from DMIFWare enables a distributed application to optimize
the use of available network resources. Figure 13 shows the resource management process in DMIFware. A
resource manager accepts the application QoS information and arbitrates for the desired QoS from the
network. The bandwidth manager regularly updates the bandwidth available from the underlying network.
Depending upon the application QoS requirements and network resource availability, it will first try to
reconfigure one or more TransMux channels previously established inside a network session using
DN_TransMuxConfigReq of the DNI primitives. If the re-configuration process does not satisfy the
application QoS requirements, then it will set up new transport channels (using DN_TransMuxSetupReq) that
can handle the application QoS requirements. In the same way, a network resource handler can also decide to
release existing transport channels (using DN_TransMuxReleaseReq) in order to efficiently manage the
network resources.

Moreover, QoS specification for each of the channels carrying the streams can be mapped appropriately to
the QoS parameters of the underlying network technology; an advantage which is available only from
DMIFWare.

5 Other Support Features
There are other supporting features that are equally important for any middleware architecture. Multiparty
communication is a core feature that should be supported in any distributed communication architecture.
Security and authentication also forms part of any successful middleware design. We present a brief
discussion on these issues so that these features can be incorporated into our present design of DMIFWare.

5.1 Multiparty Communication using DMIFWare
MPEG-4 DMIF standard has also specified the extensions to support multiparty communication also termed
as group delivery (multicast) technology [20]. While the extension does not require any modification of DAI,
it does require an extension to DNI. In addition to the three types of primitives (service, channel and data),
DNI should also incorporates identification10 and state11 primitives. A multiparty group session consists of a
DMIF group-signaling channel for state information distribution and one or more group transport channels to
deliver the application information.

10 which allows for identification of content producers (i.e. source request and id source response)
11 allows distribution of content producer states (i.e. source request and source state response)

TransMux Setup TransMux Config

MPEG-4 Application

QoS Observation Task

Application QoS info

Network QoS info

RESOURCE MANAGER

Bandwidth Manager QoS metric Monitor

Network Resource Handler

TransMux Release

 16

Figure 14: Multicast support (group delivery) in DMIFWare

There are certain additions needed in the DMIFWare design in order to enable multiparty communication. A
separate DMIF instance that supports group session (to enable multicast) needs to be incorporated in the
DMIFWare module (see Figure 14). A group session can be identified by a muticast address and a
corresponding port number. To enable multipoint communication, a single sender (also called as DPDT –
Data Producer DMIF Terminal) explicitly joins the DMIF group session registering a session by itself. This
session is known to all other terminals joining as receivers (termed as DCDT – Data Consumer DMIF
Terminal). To join the flow (using the URL), each receiver should listen to the group signaling channel. The
receiver DCDT that joins the group should avoid making any explicit request to the sender but make use of
the information that was just sent or requested by another DCDT. None of the DCDT terminals are aware
(through explicit DMIF-DMIF signaling) about other DCDT attached to the group session.

For control information distribution we have planned to use TCP multicasting while data transfer takes place
using UDP/IP multicasting. For other network options like ATM we can use AAL5/ATM multicasting. We
have looked into this issue considerably and expect it to involve it in the next phase of our DMIFWare
design.

5.2 Security/Authentication Issues for DMIFWare
DMIFware does not inherently provide any authentication or encryption functions. MPEG-4 provides an
environment where handling of high volume multimedia data streams is fairly common (especially the one
involving multiparty communication). As such providing even a fairly decent level of security will amount to
considerable use of the CPU power. This in turn has significant effect on the QoS at the middleware level.
Moreover all such algorithms providing encryption have an extra overhead. Therefore the amount of security
provided should be based on demand mostly to cater to the requirements of efficient middleware
architecture. In any case, we have left considerable flexibility within our DMIFWare design to incorporate
security and authentication functions whenever required.

6 Selective Comparision of Related Work
DMIFWare provides a comprehensive systems approach for providing QoS based multimedia services to
MPEG-4 applications. However, the performance of such a middleware is vital in case of multimedia -
specific domains where requirements for QoS guarantees are high. There have been several approaches to
providing QoS support in a middleware; each of them requires a detailed characterization of applications and
specification of communication requirements at different levels. We characterize each of these approaches in
terms of the their overall features and functionality.

To do this, we compare DMIFWare with other important and existing middleware architectures. There are
several such middlewares [1][2][3][5][17][18][19] available; we will necessarily consider the one’s which

DAI

Control - plane

User - plane

Data Producer

Data Consumer A
pp

lic
at

io
n

La
ye

r

D

M
IF

 L
ay

er
 DMIF Group

Signaling

DNI

 17

justifies our present discussion. First, we take the Lancaster QoS- Architecture [18] which was meant to
define QoS at the end-systems. The second such middleware architecture called as DaCaPo++ [1] has
comparable features to DMIFWare. In addition, we will also discuss a third model i.e. the xbind’s DMIF
delivery model [3] meant specifically for MPEG-4 applications. Our comparison across these three
architectures along with DMIFWare is strictly based on their features and functionality. A performance
specific evaluation requires availability of evaluation parameters for a middleware (e.g. middleware
overhead in terms of memory, Interface (API) throughput etc.) that enables a comparison across each of
these models (except for DaCaPo++ where performance related data is available). Therefore we have
restricted ourselves to a feature based “selective comparison” technique between each of these models.

To emphasize the core issues that are combined with DMIFWare:

• Application Quality of Service (QoS) Specification

• Flexibility of a middleware architecture

• Network Level QoS Support using RSVP (NT v 5.0 & Windows 98)

• Effective transport protocol stack configuration

• Inherent support to local delivery and broadcast delivery technology (In progress).

• Dynamic mapping of transport channels to data channels along with QoS support.

However, other related work in this direction have also focussed significantly to issues that DMIFWare
presently does not support or else the work is still in progress. A brief comparison of DMIFWare and other
related work is highlighted in the following table:

CRITERIA QoS-A DaCaPo++ Xbind DMIFWare

Middleware Flexibility No High Medium High

Portability UNIX UNIX WinNT WinNT/95

Signaling Stack No Flexible Flexible Flexible

QoS (Appl. Level) Yes Yes Yes Yes

QoS adaptation Yes Yes Yes Yes

QoS (Network Level

Support using RSVP)

No No No Yes

Multicast Support No Yes No In progress

Synchronization No Yes Yes Yes

Security No Yes No No

FlexMux Functionality No No Yes Yes

Middleware Overhead High Medium Meduim Low

Dynamic Channel Allocation No No Yes Yes

Local delivery and Broadcast Support No No Not
Specified

In Progress

Table 3: Comparing DMIFWare with other communication middleware architectures

Many architectures have attributed security and authentication features to an efficient middleware design.
Altough DaCaPo++ incorporates such features, other designs have overlooked this functionality. In case of
DMIFWare, a related discussion was presented in section 5.2 altough our present design does not support
such functionality. To enable multiparty communication, multicast support is required. Here again

 18

DaCaPo++ architecture scores over other middleware architectures. We have briefly explained how we will
be providing multiparty communication support in a DMIFWare. This will be incorporated in the next phase
of our design. Xbind’s model offers functionalities similar to that of our DMIFWare design, meant for
MPEG-4 delivery. But the model lacks features like security and authentication and does not support
multiparty communications. All such features are coupled in our DMIFWare design in addition to support
for QoS. Even tough all the architectures provide end-host support for QoS, they however do not enable side-
by-side QoS support from the underlying network. DMIFWare can negotiate for QoS guarantees from the
network. It can reserve resources (banwidth) from the network by negotiating with the network elements
(routers) for desired resources all along the path. The functionality to reserve resources using RSVP protocol
has not been provided in any of the delivery architectures, other than DMIFWare.

7 Open Issues in DMIFWare design
There are open issues in the DMIFWare design that needs resolution. We discuss only the important ones
and mention our approach towards any enhancement in future for the DMIFWare design.

1. The design of the DMIFWare was only limited to native stack options for IP networks. We used here a
transport option of TCP/UDP for control message signaling and data channels respectively. Extension of
our design towards support for delivery technologies like ATM, wireless (especially for mobile
multimedia terminals) should also be envisaged.

2. Extension of DMIFWare to support local delivery and other broadcast technologies are currently in
progress. Work in this direction is in the completion phase and it is expected to be soon incorporated into
our existing DMIFWare design.

3. MPEG-4 standard does not specify any provision for security/authentication. Some proposals in the
MPEG-4 standards before arriving to a general consensus about these issues can be particularly useful
when implementing these features within DMIFWare.

4. Performance evaluation of the middleware (in terms of middleware overhead based on memory and
CPU, Interface throughput, response time of control message signalling etc.) should be carried out to
ratify the DMIFWare design.

8 Summary and Conclusion
In this paper, we detailed the design of the multimedia communication middleware (DMIFWare) architecture
used specifically for the delivery of multimedia data. DMIF Application Interface (DAI) offers the required
degree of transparency between user applications and the delivery technology supported by middleware. It
hides all the complexity of the underlying transport details and makes available to the MPEG-4 application
user a set of primitives that can be invoked irrespective of the delivery technology.

DMIFWare integrates all types of delivery technologies as specified in the MPEG-4 standard, in addition to
optimizing QoS not only at the DMIFWare (middleware) level but also at the network level. It supports
Resource Reservation Protocol (RSVP) to guarantee resources from the underlying network using the GQoS
winsock2 API.

DMIFWare integrates group delivery support i.e. multicasting (point–to-multipoint communication) feature
by justifying the need for certain additions in the present model. The multicast feature intends to minimize
the signaling to distribute the state of the DMIF group session and at the same time to allow dynamic join
and leave of DMIF terminals to the DMIF group session. Moreover, the implementation also supports
dynamic creation and release of transport channels that provide efficient management of network resources.
Such type of features can provide different levels of QoS guarantees at all types of environments (depending
upon resource availability).

Our group at SAS has already implemented the beta version of the QoS-aware middleware (DMIFWare)
used for multimedia communication. However, the final implementation will incorporate all the open issues;

 19

issues that are presently under development (multiparty communication, local delivery and broadcast
support, etc.) and those partially addressed (security/authentication, other transport stack options, billing
etc.). Future DMIFware will provide much more enhanced features necessary to carry out the next generation
multimedia communication.

9 Acknowledgements
We gratefully acknowledge the support of Dr. P. G. Poonacha, Dr. B. Singh and Vineet Govil who are the
main architect in leading our implementation towards MPEG-4 DMIFWare design. Many of our group
colleagues (Multimedia Technology Group) at SAS constantly provided useful comments and feedback
during the DMIFWare design. The authors would like to thank all of them for their invaluable and
constructive comments.

10 References
[1] Bukhard Stiller, Christina Claus, Marcel Waldvogel, Germano Caronni, Daniel Bauer, Bernhard

Plattner, “The Design and Implementation of a Flexible Middleware for Multimedia Communications
Comprosing Usage Experience”, Institute of Communication Networks, ETHZ, Zurich, TIK-Report No.
54, July 1998. Source: http://www.tik.ee.ethz.ch/tik/research/publications/Publications.html

[2] Baochun Li, Klara Nahrstedt, “Configurable Adaptors for Multimedia Delivery – an End System
Middleware Solution” Technical Report UIUCDCS-R-97-2018, Department of Computer Science,
University of Illinois at Urbana-Champaign, July 1997. Source: http://cairo.cs.uiuc.edu/papers.html

[3] J. F. Huard, A.A. Lazar, K. S. Lim, and G.S. Tselikis "Realizing the MPEG-4 Multimedia Delivery
Framework," IEEE Network Magazine, pp. 35-45, November/December 1998. Source:
http://www.xbind.com/pub.html

[4] Klara Nahrstedt, Hao-hua Chu and Srinivas Narayan “QoS aware Resource Management for
distributed Multimedia Applications” accepted to Journal on High-Speed Networking (Special
Issue on Multimedia Networking). Source: http://cairo.cs.uiuc.edu/papers.html

[5] Klara Nahrstedt, Baochun Li “A Control – Based Middleware Framework for Quality of
Service Adapations” to appear in IEEE Journal of Selected Areas in Communications, Special
Issue on Service Enabling Platforms, 1999. Source: http://cairo.cs.uiuc.edu/papers.html

[6] J. F. Huard and A.A. Lazar, "A Programmable Transport Architecture with QOS Guarantees,"
IEEE Communications Magazine, Vol. 36, No. 10., pp. 54-62, October 1998. Source:
http://www.xbind.com/pub1.html

[7] Windows Sockets 2, Protocol Specific Annex, Revision 2.0.3, May 10, 1996. Source:
ftp://ftp.microsoft.com/bussys/winsock/winsock2/wsanx203.doc

[8] ISO/IEC 14496-1 International Standard “MPEG-4 Systems”. source: http://www.cdt.luth.se/
~rolle/mpeg4.html

[9] ISO/IEC 14496-2 International Standard “MPEG-4 Vedio”. Source: source: http://www.cdt.luth.se/
~rolle/mpeg4.html

[10] ISO/IEC 14496-3 International Standard “MPEG-4 Audio” Source: source: http://www.cdt.luth.se/
~rolle/mpeg4.html

 20

[11] “Information Technology - Generic Coding of Moving Pictures and Associated Audio
Information Part 6: Delivery Multimedia Integration Framework,” ISO/IEC CD 14496-6, May
1998.source: http://www.cdt.luth.se/ ~rolle/mpeg4.html

[12] ISO/IEC 14496- 5 International Standard “MPEG-4 Reference Software”. Source: source:
http://www.cdt.luth.se/ ~rolle/mpeg4.html

[13] Yoram Bernet, Jim Stewart, Raj Yavatkar, Dave Anderson, Charlie Tai, Bob Quinn, Kam Lee,
Windows Networking Group “ Winsock Generic QoS Mapping” (draft – under development), Version
3.1, September 1998. Source: ftp://ftp.microsoft.com/bussys/winsock/winsock2/gQoS_spec.doc

[14] R. Braden, L. Zhang, S. Berson, S. Herzog, S. Jamin “Resource Reservation Protocol –
Version 1 Functional specification” IETF RFC 2205, September , 1997 (Related:
2210/2211/2212/2215). Source: http://erf.fh-koeln.de/rfc.html

[15] Xipeng Xioa and Lionel M. Ni “Internet QoS: A Big Picture”, IEEE Network, pp 8-18,
March/April 1999

[16] Welter Weiss, “ QoS with differentiated services”, BELL-LABS technical journal (Packet
Networking), Volume 3, Number 4, October-November 1998.

[17] Campbell, A.T., "Mobiware: QOS-Aware Middleware for Mobile Multimedia
Communications" , 7th IFIP International Conference on High Performance Networking, White
Plains, NY, April, 1997. Source: http://comet.ctr.columbia.edu/~campbell/andrew/publications
/publications.html

[18] Campbell, A.T., Coulson G., and D. Hutchison, "Supporting Adaptive Flows in a Quality of
Service Architecture", ACM/Springer Verlag Multimedia Systems Journal , Special Issue on
QoS Architecture, Vol. 6 No. 3, pg. 167-178, May 1998

[19] J.Robert Ensor and Sudhir R. Ahuja “Communication Middleware for Multi-Party Multimedia
Applications” BELL-LABS Technical journal, Winter 1997. Source: http://www.lucent.com/
ideas/perspectives/bltj

[20] ISO/IEC JTC 1/SC 29/WG 11 N 2720 (date: 99-04-01) ISO/IEC 14496-6: 1999/PDAM 1
“Information technology – Very-low bitrate audiovisual coding – Part 6: Delivery Multimedia
Integration Framework (DMIF)”

[21] Douglas Comer, David Stevens “Internetworking with TCP/IP” Volume III , Client Server Programing
and Applications, ISBN-81-203-0928-6.

 21

Appendix -A

QOS-Related Data Structures and API Calls

Note: The provision for Generic-Quality of Service (GQOS) support is available only in Windows
NT 5.0 (beta machine) or Windows 98. For detailed description of QoS related data
structures and related API calls (which involve RSVP), one can refer [14])

To open a socket supporting QOS:

• Enumerate the available protocols using either WSAEnumProtocols() or WSAIoctl(SIO_GET_QOS).

• Loop through the returned list of protocols looking for a protocol that supports QOS. Do this by checking if the
XP1_QOS_SUPPORTED flag is set in dwServiceFlags1 in each WSAPROTOCOL_INFO structure.

• When a protocol is found that supports QOS, call WSASocket() passing a pointer to that WSAPROTOCOL_INFO
structure. Also be sure to set the WSA_FLAG_OVERLAPPED flag so that the socket is created in
overlapped mode. The RSVP service provider requires an overlapped socket.

In Winsock2, a QOS-aware application can specify the QOS parameters of its sent and received traffic in the
SendingFlowspec and ReceivingFlowspec structures within the QualityOfService (QOS) structure:

typedef struct _QualityOfService

{

 FLOWSPEC SendingFlowspec; /* flow spec for data sending */

 FLOWSPEC ReceivingFlowspec; /* flow spec for data receiving */

 WSABUF ProviderSpecific; /* provider specific stuff */

} QOS;

Where WSABUF contains a pointer to a provider specific buffer that may be used by the application to supply
additional QOS control objects to QOSSP. The Flowspec, which contains a set of token bucket parameters and a service
type specification, is defined as:

typedef struct _flowspec
{
 int32 TokenRate; /* In Bytes/sec */
 int32 TokenBucketSize; /* In Bytes */
 int32 PeakBandwidth; /* In Bytes/sec */
 int32 Latency; /* In microseconds */
 int32 DelayVariation; /* In microseconds */
 SERVICETYPE ServiceType; /* Service Type */
 int32 MaxSduSize; /* In Bytes */
 int32 MinimumPolicedSize; /* In Bytes */
} FLOWSPEC;

Each flowspec muct be related to any of the following QoS related call:

• WSAConnect()

int WSAConnect (

SOCKET s,
const struct sockaddr FAR * name,
int namelen,
LPWSABUF lpCallerData,
LPWSABUF lpCalleeData,
LPQOS lpSQOS,

 22

LPQOS lpGQOS
);

• WSAJoinLeaf()

SOCKET WSAJoinLeaf (
SOCKET s,
const struct sockaddr FAR * name,
int namelen,
LPWSABUF lpCallerData,
LPWSABUF lpCalleeData,
LPQOS lpSQOS,
LPQOS lpGQOS,
DWORD dwFlags

);

• WSAAccept(lpfnCondition)

SOCKET WSAAccept (
SOCKET s,

struct sockaddr FAR * addr,
LPINT addrlen,
LPCONDITIONPROC lpfnCondition,
DWORD dwCallbackData

);

A prototype of the condition function is as follows:

int CALLBACK ConditionFunc(

IN LPWSABUF lpCallerId,
IN LPWSABUF lpCallerData,
IN OUT LPQOS lpSQOS,
IN OUT LPQOS lpGQOS,
IN LPWSABUF lpCalleeId,
OUT LPWSABUF lpCalleeData,
OUT GROUP FAR * g,
IN DWORD dwCallbackData

);

• WSAIoctl(SIO_SET_QOS)
int WSAIoctl (

SOCKET s,
DWORD dwIoControlCode,
LPVOID lpvInBuffer,
DWORD cbInBuffer,
LPVOID lpvOUTBuffer,
DWORD cbOUTBuffer,
LPDWORD lpcbBytesReturned,
LPWSAOVERLAPPED lpOverlapped,
LPWSAOVERLAPPED_COMPLETION_ROUTINE lpCompletionROUTINE

);

The prototype of the completion routine is as follows:
void CALLBACK CompletionRoutine(

IN DWORD dwError,
IN DWORD cbTransferred,
IN LPWSAOVERLAPPED lpOverlapped,
IN DWORD dwFlags

);

